Product Code Database
Example Keywords: wheels -netbooks $75
   » » Wiki: Calabi Triangle
Tag Wiki 'Calabi Triangle'.
Tag

The Calabi triangle is a special found by and defined by its property of having three different placements for the largest that it contains. It is an triangle which is with an irrational but ratio between the lengths of its sides and its base.


Definition
Consider the largest square that can be placed in an arbitrary triangle. It may be that such a square could be positioned in the triangle in more than one way. If the largest such square can be positioned in three different ways, then the triangle is either an equilateral triangle or the Calabi triangle. Thus, the Calabi triangle may be defined as a triangle that is not equilateral and has three placements for its largest square.


Shape
The triangle is which has the same length of sides as . If the ratio of the base to either leg is , we can set that . Then we can consider the following three cases:
case 1) is
The condition is 0 < x < \sqrt{2}.
In this case is valid for equilateral triangle.
case 2) is
The condition is x = \sqrt{2}.
In this case no value is valid.
case 3) is
The condition is \sqrt{2} < x < 2.
In this case the Calabi triangle is valid for the largest positive root of 2x^3 - 2x^2 - 3x + 2 = 0 at x = 1.55138752454832039226... ().

Consider the case of . Then

0 < x < 2.
Let a base angle be and a square be on base with its side length as . Let be the foot of the perpendicular drawn from the apex to the base. Then
\begin{align}
HB &= HC = \cos\theta = \frac{x}{2}, \\ AH &= \sin\theta = \frac{x}{2}\tan\theta , \\ 0 &< \theta < \frac{\pi}{2}. \end{align} Then and , so .

From △DEB ∽ △AHB,

\begin{align}
& EB : DE = HB : AH \\ &\Leftrightarrow \bigg(\frac{x - a}{2}\bigg) : a = \cos \theta : \sin \theta = 1 : \tan \theta \\ &\Leftrightarrow a = \bigg(\frac{x - a}{2}\bigg)\tan \theta \\ &\Leftrightarrow a = \frac{x \tan \theta}{\tan \theta + 2}. \\ \end{align}


case 1) is acute triangle
Let be a square on side with its side length as . From △ABC ∽ △IBJ,
\begin{align}
& AB : IJ = BC : BJ \\ &\Leftrightarrow 1 : b = x : BJ \\ &\Leftrightarrow BJ = bx. \end{align}

From △JKC ∽ △AHC,

\begin{align}
& JK : JC = AH : AC \\ &\Leftrightarrow b : JC = \frac{x}{2}\tan\theta : 1 \\ &\Leftrightarrow JC = \frac{2b}{x\tan\theta}. \end{align}

Then

\begin{align}
&x = BC = BJ + JC = bx + \frac{2b}{x\tan\theta} \\ &\Leftrightarrow x = b\frac{x^2 \tan\theta + 2}{x\tan\theta} \\ &\Leftrightarrow b = \frac{x^2 \tan\theta}{x^2 \tan\theta + 2}. \end{align}

Therefore, if two squares are congruent,

\begin{align}
&a = b \\ &\Leftrightarrow \frac{x \tan \theta}{\tan \theta + 2} = \frac{x^2 \tan\theta}{x^2 \tan\theta + 2} \\ &\Leftrightarrow x\tan\theta\cdot(x^2 \tan\theta + 2) = x^2 \tan\theta(\tan\theta + 2) \\ &\Leftrightarrow x\tan\theta\cdot(x(\tan\theta + 2) - (x^2 \tan\theta + 2)) = 0 \\ &\Leftrightarrow x\tan\theta\cdot(x\tan\theta - 2)\cdot(x - 1) = 0 \\ &\Leftrightarrow 2\sin\theta\cdot2(\sin\theta - 1)\cdot(x - 1) = 0. \end{align}

In this case, \frac{\pi}{4} < \theta < \frac{\pi}{2}, 2\sin\theta\cdot2(\sin\theta - 1) \ne 0.

Therefore x = 1, it means that is equilateral triangle.


case 2) is right triangle
In this case, x = \sqrt{2}, \tan\theta = 1, so a = \frac{\sqrt{2}}{3}, b = \frac{1}{2}.

Then no value is valid.


case 3) is obtuse triangle
Let be a square on base with its side length as .

From △AHC ∽ △JKC,

\begin{align}
& AH : HC = JK : KC \\ &\Leftrightarrow \sin\theta : \cos\theta = b : (1-b) \\ &\Leftrightarrow b\cos\theta = (1-b)\sin\theta \\ &\Leftrightarrow b = (1-b)\tan\theta \\ &\Leftrightarrow b = \frac{\tan\theta}{1+\tan\theta}. \end{align}

Therefore, if two squares are congruent,

\begin{align}
&a = b \\ &\Leftrightarrow \frac{x \tan \theta}{\tan \theta + 2} = \frac{\tan\theta}{1+\tan\theta} \\ &\Leftrightarrow \frac{x}{\tan \theta + 2} = \frac{1}{1+\tan\theta} \\ &\Leftrightarrow x(\tan\theta + 1) = \tan\theta + 2 \\ &\Leftrightarrow (x - 1)\tan\theta = 2 - x. \end{align}

In this case,

\tan\theta = \frac{\sqrt{(2 + x)(2 - x)}}{x}.

So, we can input the value of ,

\begin{align}
&(x - 1)\tan\theta = 2 - x \\ &\Leftrightarrow (x - 1)\frac{\sqrt{(2 + x)(2 - x)}}{x} = 2 - x \\ &\Leftrightarrow (2 - x)\cdot((x - 1)^2 (2 + x) - x^2 (2 - x)) = 0 \\ &\Leftrightarrow (2 - x)\cdot(2x^3 - 2x^2 - 3x + 2) = 0. \end{align}

In this case, \sqrt{2} < x < 2, we can get the following equation:

2x^3 - 2x^2 - 3x + 2 = 0.


Root of Calabi's equation
If is the largest positive root of Calabi's equation:
2x^3 - 2x^2 - 3x + 2 = 0 , \sqrt{2} < x < 2
we can calculate the value of by following methods.


Newton's method
We can set the function f : \mathbb{R} \rarr \mathbb{R} as follows:
\begin{align}
f(x) &= 2x^3 - 2x^2 -3x + 2, \\ f'(x)&= 6x^2 - 4x - 3 = 6\bigg(x - \frac{1}{3}\bigg)^2 - \frac{11}{3}. \end{align} The function is continuous and differentiable on \mathbb{R} and
\begin{align}
f(\sqrt{2}) &= \sqrt{2} - 2 < 0, \\ f(2) &= 4 > 0, \\ f'(x) &> 0 , \forall x \in \sqrt{2},. \end{align} Then is monotonically increasing function and by Intermediate value theorem, the Calabi's equation has unique solution in open interval \sqrt{2} < x < 2.

The value of is calculated by Newton's method as follows:

\begin{align}
x_0 &= \sqrt{2}, \\ x_{n+1} &= x_n - \frac{f(x_n)}{f'(x_n)} = \frac{4x_n^3-2x_n^2-2}{6x_n^2-4x_n-3}. \end{align}
+ Newton's method for the root of Calabi's equation ! NO !! itaration value


Cardano's method
The value of can expressed with by using Cardano's method:
x = {1 \over 3} \Bigg(1 + \sqrt3{-23 + 3i \sqrt{237} \over 4} + \sqrt3{-23 - 3i \sqrt{237} \over 4} \Bigg) .{4} , \\
r &= \frac{1}{4}\sqrt{(-23)^2+9 \cdot 237} = \frac{1}{4}\sqrt{2 \cdot 11^3} = \Bigg(\sqrt{\frac{11}{2}}\Bigg)^3, \\ \cos\varphi &= - \frac{23}{4}\frac{1}{r} = - \frac{23 \cdot 2 \sqrt{2}}{4 \cdot 11 \sqrt{11}} = - \frac{23}{11 \sqrt{22}}, \\ \sqrt3{\alpha} &= \sqrt3{r}e^{\frac{i\varphi}{3}}=\sqrt3{r}\Big(\cos\Big(\frac{\varphi}{3}\Big) +i\sin\Big(\frac{\varphi}{3}\Big)\Big), \\ \sqrt3{\alpha} + \sqrt3{\bar{\alpha}} &= 2 \sqrt3{r} \cos\Big(\frac{\varphi}{3}\Big) = \sqrt{22} \cos\!\bigg( {1 \over 3} \cos^{-1}\!\!\bigg(\!-{23 \over 11 \sqrt{22}} \bigg) \bigg), \\ x &= \frac{1}{3}\bigg(1 + \sqrt3{\alpha} + \sqrt3{\bar{\alpha}} \bigg) = {1 \over 3} \bigg(1 + \sqrt{22} \cos\!\bigg( {1 \over 3} \cos^{-1}\!\!\bigg(\!-{23 \over 11 \sqrt{22}} \bigg) \bigg) \bigg). \end{align}


Viète's method
The value of can also be expressed without by using Viète's method:
\begin{align}
x &= {1 \over 3} \bigg(1 + \sqrt{22} \cos\!\bigg( {1 \over 3} \cos^{-1}\!\!\bigg(\!-{23 \over 11 \sqrt{22}} \bigg) \bigg) \bigg) \\
 &=  1.55138752454832039226195251026462381516359170380389\cdots .
     
\end{align}


Lagrange's method
The value of has continued fraction representation by Lagrange's method as follows:
1, =
1 + \cfrac{1}{1 +
   \cfrac{1}{1 +
   \cfrac{1}{4 +
   \cfrac{1}{2 +
   \cfrac{1}{1 +
   \cfrac{1}{2 +
   \cfrac{1}{1 +
   \cfrac{1}{5 +
   \cfrac{1}{2 +
   \cfrac{1}{1 +
   \cfrac{1}{3 +
   \cfrac{1}{1 +
   \cfrac{1}{1 +
   \cfrac{1}{390 + \cdots    }}}}}}}}}}}}}}. - [https://gdz.sub.uni-goettingen.de/id/PPN308899857?tify=%7B%22pages%22%3A%5B544%2C545%5D%2C%22pan%22%3A%7B%22x%22%3A0.947%2C%22y%22%3A0.64%7D%2C%22view%22%3A%22toc%22%2C%22zoom%22%3A0.354%7D Œuvres II, p.539-578.] - [https://gdz.sub.uni-goettingen.de/id/PPN308899857?tify=%7B%22pages%22%3A%5B586%2C587%5D%2C%22pan%22%3A%7B%22x%22%3A0.947%2C%22y%22%3A0.64%7D%2C%22view%22%3A%22toc%22%2C%22zoom%22%3A0.354%7D Œuvres II, p.581-652.]{k_{95}} \\
 &= \frac{10264770284430115358350493989796951584352149694}{6616509493602288551995313304988866597070326335} \\
 &= 1.5513875245483203922619525102646238151635917038038871995280071201179267425542569572957604536135484903\cdots, \\
     
\varepsilon &= \frac{1}{k_{95}(k_{95}+k_{94})} \\
           &= 1.82761... \times 10^{-91}.
     


base angle and apex angle
The Calabi triangle is with base angle and apex angle as follows:
\begin{align}
\theta &= \cos^{-1}(x/2) \\
      &= 39.13202614232587442003651601935656349795831966723206\cdots^\circ, \\
     
\psi &= 180 - 2\theta \\
      &= 101.73594771534825115992696796128687300408336066553587\cdots^\circ. \\
     
\end{align}


See also
  • Biggest little polygon
  • Inscribed square in a triangle


Footnotes

Notes

Citations


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
2s Time